How to Clean Stainless Steel or Rusty Scissors

 

 How to Clean Stainless Steel or Rusty Scissors thumbnail 

Stainless steel, by design, should not rust. Stainless steel comes in different grades, and some grades rust easily. Number 304 stainless is most common for household products. Stainless with 18 percent chromium and a percentage of nickel wears well and cleans readily. Items such as an iron skillet sitting on stainless can transfer rust to the surface, however, and tiny steel particles touching stainless can also cause rust. Cleaning stainless steel items with steel wool or similar abrasive scouring pad may cause rusting. Instead, remove the rust with common household products. Does this Spark an idea

Instructions

  1. Vinegar

    • 1
      Pour white vinegar on a soft cloth. Vinegar is acetic acid but mild enough to drink. It is a safe cleaning agent for household and kitchen products.
    • 2
      Rub the stainless steel with the cloth in the area of the rust stain. Rub in the direction of the grain, if there is an obvious grain to the stainless. Some stainless is polished until the grain is not visible.
    • 3
      Rinse thoroughly to remove all traces of vinegar. Vinegar is environmentally safe so you can wash it down the sink.
    • 4
      Toss the soft cloth in the next load of laundry. It's good for your wash too.

    Oxalic Acid

    • 5
      Make a paste of oxalic acid cleanser and water. Barkeeper's Friend and Zud, for example, are cleansers containing oxalic acid.
    • 6
      Apply the oxalic acid paste mixture to rust-stained areas. Oxalic acid is more powerful than vinegar and can be corrosive to skin tissue. Inhalation or ingestion can cause serious injury. Although this is a common household cleanser, take precautions not to get it in your eyes or leave it on your skin.
    • 7
      Allow the mixture to work on the stain for five minutes. Wet a soft cloth or sturdy paper towel--something you can toss when done.
    • 8
      Rub the paste on the stainless steel with the soft, wet cloth in the direction of the grain.
    • 9
      Rinse with clear water. Clean the stainless steel item with dishwashing detergent and water to remove all traces of oxalic acid. Throw away the soft cloth or paper towel where animals or children cannot get it.




Safety scissors

 
Safety scissors were an attempt to market scissors to consumers who had never even considered buying scissors before. At some point, a marketer thought to himself, "You know, scissors sure are awesome and all. But there's one problem with that: they're so awesome that pathetic n00bs can't handle them! Is there some way we can reach this untapped demographic by wussifying scissors?" Thus, the safety scissors were created. They did not sell well, however, when it was discovered that they were not sharp enough to cut veins, and thus the targeted demographic avoided them. Remember, scissors are never safe when placed in the right hand.

Fabric Scissors

Fabric scissors come in a number of sizes, shapes and styles. Dressmaker shears, for example, usually have a knife edge, meaning the blade is sharpened on an angle, like a knife, making it easy to slide through fabric. Pinking shears have a blade cut like a saw. When you cut fabric with pinking shears, you get a ragged, zigzag edge, which can come in handy when you're leaving the edge of the fabric raw.

Tailor scissors have much smaller blades than dressmaker scissors. They're an ideal choice for hand sewing projects, as the blades are small and portable. Other fabric scissors, such as thread clippers and embroidery scissors, have small, sharp points designed to trim threads without slicing through the fabric.

Price Range

Fabric scissors can be very cheap or on the expensive side. The more expensive the fabric scissors, the more high quality they generally are. Smaller scissors usually cost less than dressmaker scissors. Shears tend to be the most expensive and can cost up to $40 per pair.

Materials

Stainless steel scissors are durable and long-lasting. Only buy a pair of scissors that can be sharpened, as a dull pair won't cut easily and can damage fabric. The grips of the scissors can also be metal, though some people prefer rubberized, comfort grips.

Home Manicure: The Art Of Manicuring Made Easy

By: Barisa Wyse

Why spend your hard earned money on something that you can easily do yourself? Home manicures are easier than you think, can save you money for indulging in other types of "treats", and give you the satisfaction of being able to say that you did it by yourself. So set aside some time and lets get started manicuring those nails!

A home manicure ought to be a weekly procedure. Here are your manicure instructions, so read them carefully before you start to ensure you have all the necessary supplies close at hand.

Begin by getting rid of any previous nail polish. Hold a cotton pad dampened with polish remover against the nail for a couple of seconds; and then rub from the base of the nail towards the tip. Apply a separate piece of cotton for each nail.

Next, file each nail with an emery board on a slant, just below the nail, file from sides to middle in one direction only.

To soften cuticles for the manicuring operation, immerse your fingertips for 5 minutes in warm, soapy water. Then applying the dull end of an orangewood stick dipped in cuticle remover, lightly push back the cuticle. Clip hangnails with a small pair of scissors.

Carry on your home manicure by scrubbing the nails with a nailbrush and warm soapy water. Clean below the nails with an orangewood stick wrapped up in wet cotton.

To put on polish, first rub your nails with remover and make certain they are dry and free of soap. Spread out one hand flat on the table. With the other, apply one thin coating of colorless polish. Brush from the base of the nail towards the tip, start down the middle, then down each side. Allow the polish to dry between coatings. Then put on two thin coats of color. With a tissue, get rid of the hairline of polish from the top side of each nail. Lastly, apply a colorless sealing coat all over the nail and beneath the tip.

Congratulations, you have finished your home manicure! Now sit back and admire the great job you did manicuring your nails.

It may come to no surprise that the procedure for a manicure & pedicure (toenails) are nearly identical, other than soaking and scrubbing any dead skin or calluses off your feet. So doing a home pedicure is also easy if you simply follow the above directions. So go ahead and "treat your feet"!

Read more: http://www.articlesnatch.com/Article/Home-Manicure--The-Art-Of-Manicuring-Made-Easy/820413#ixzz0eAYF5hQa
Under Creative Commons License: Attribution No Derivatives

LST scissors Attic Ladders with insulated white finished door

The LST attic ladder provides an easy and safe access to the attic. The scissors construction makes ladder folding possible. A 1 3/8" thick, white, finished wooden door with an approximate R value 5.2 significantly reduces heat loss. A peripheral seal in the lower part of the box guarantees first-classtightness. The S-shaped strings give a modern appearance and perform the role of a handrail, facilitating climbing the ladder.

The scissors system of folding the ladder and the possibility to lock the hatch in a fully open position ensure an ease and safety of operation. The small ladder dimensions, achieved thanks to the unique system of folding, allow the ladder to be installed in smaller openings. Safety is ensured by the application of rounded side supporters and remaining hardware which do not pose any risk of injury. The outer (visible) side of the door is smooth without any visible fixing elements.

SEE: SIZES AND PRICES

SEE: TECHNICAL SPECIFICATIONS


Features:

  • Max load: 300 lbs**
  • 1⅜” thick insulated white finished wooden door helps to reduce energy costs - approximate R value 5.2

  • Door is equipped with rubber gasket
  • Patented door hinge system greatly improves safety,stability, and durability

  • Maximum standard ceiling height 9’2” or up to 10’2” (with one extra step) and up to 10’10” (with two extra steps)

  • All hardware fully concealed after installation
  • Nearly invisible integrated locking rod
  • Metal opening and closing rod included
  • High quality materials and craftsmanship
  • Two (2) year 100% warranty

    Enlarge image

    ** According to European Standard

Additional ladder features: click on the image below to see a larger view

Adjustment of ladder' length

US Patent 6090108 - Bipolar endoscopic surgical scissor blades and instrument incorporating the same

US Patent Issued on July 18, 2000

Description



BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to endoscopic surgical instruments. More particularly, the invention relates to an endoscopic surgical instrument having end effectors made out of a combination of conductive and non-conductive materials. The invention has particular use with respect to bipolar endoscopic cautery. For purposes herein, the term "endoscopic instruments" is to be understood in its broadest sense and to include laparoscopic, arthroscopic, and neurological instruments, as well as instruments which are inserted through an endoscope, although it is not limited thereto.

2. State of the Art

Endoscopic surgery is widely practiced throughout the world today and its acceptance is growing rapidly. In general, endoscopic/laparoscopic surgery involves one or more incisions made by trocars where trocar tubes are left in place so that endoscopic surgical tools may be inserted through the tubes. A camera, magnifying lens, or other optical instrument is often inserted through one trocar tube, while a cutter, dissector, or other surgical instrument is inserted through the same or another trocar tube for purposes of manipulating and/or cutting the internal organ. Sometimes it is desirable to have several trocar tubes in place at once in order to receive several surgical instruments. In this manner, organ or tissue may be grasped with one surgical instrument, and simultaneously may be cut with another surgical instrument; all under view of the surgeon via the optical instrument in place in the trocar tube.

Various types of endoscopic surgical instruments are known in the art. One type of instrument generally comprises a slender tube containing a push rod which is axially movable within the tube by means of a handle or trigger-like actuating means. An end effector is provided at the distal end of the tube and is coupled to the push rod by means of a clevis so that axial movement of the push rod is translated to rotational or pivotal movement of the end effector. End effectors may take the form of scissors, grippers, cutting jaws, forceps, and the like. Because of their very small size and the requirements of strength and/or sharpness, end effectors are difficult to manufacture and are typically formed of forged stainless steel, or are cast from bronze or from a superalloy.

Modern endoscopic procedures often involve the use of electrocautery, as the control of bleeding by coagulation during surgery is critical both in terms of limiting loss of blood and in permitting a clear viewing of the surgical site. As used herein, cautery, electrocautery, and coagulation are used interchangeably. Several types of electrocautery devices for use in endoscopic surgery are described in the prior art. Monopolar electrosurgical instruments employ the instrument as an electrode, with a large electrode plate beneath and in contact with the patient serving as the second electrode. High frequency voltage spikes are passed through the instrument to the electrode (i.e., end effector) of the endoscopic instrument to cause an arcing between the instrument and the proximate tissue of the patient. The current thereby generated continues through the patient to the large electrode plate beneath the patient. Monopolar cautery has the disadvantage that the current flows completely through the patient. Because control of the current path through the body is not possible, damage can occur to tissue both near and at some distance from the surgical site. In addition, it has been observed that monopolar cautery can result in excessive tissue damage due to the arcing between the end effector and the tissue.

In order to overcome the problems associated with monopolar cautery instruments, bipolar instruments have been introduced. In bipolar electrosurgical instruments, two electrodes which are closely spaced together are utilized to contact the tissue. Typically, one end effector acts as the first electrode, and the other end effector acts as the second electrode, with the end effectors being electrically isolated from each other and each having a separate current path back through to the handle of the instrument. Thus, in a bipolar instrument, the current flow is from one end effector electrode, through the tissue to be cauterized, to the other end effector electrode.

Various endoscopic instruments with cautery capability are known in the art. Several hemostatic bipolar electrosurgical scissors have also been described. U.S. Pat. No. 3,651,811 to Hildebrandt describes a bipolar electrosurgical scissors having opposing cutting blades forming active electrodes. The described scissors enables a surgeon to sequentially coagulate the blood vessels contained in the tissue and then to mechanically sever the tissue with the scissor blades. In particular, with the described bipolar electrosurgical scissors, the surgeon must first grasp the tissue with the scissor blades, energize the electrodes to cause hemostasis, de-energize the electrodes, and then close the scissor blades to sever the tissue mechanically. The scissors are then repositioned for another cut accomplished in the same manner. With the bipolar electrosurgical scissors of Hildebrandt, the surgeon cannot maintain the electrodes in a continuously energized state because the power supply would be shorted out and/or the blades damaged if the blades are permitted to contact each other while energized.


The disadvantages of the bipolar scissors of Hildebrandt are overcome by the disclosure in U.S. Pat. Nos. 5,324,289 and 5,330,471 to Eggers. In its preferred embodiment, the bipolar electrosurgical scissors of Eggers comprise a pair of metal scissor blades which are provided with an electrically insulating material interposed between the shearing surfaces of the blades so that when the scissor blades are closed, the metal of one blade never touches the metal of the other blade; i.e., the insulating material provides the cutting edge and the shearing surface. With the arrangement provided by Eggers, a cautery current will pass from the top back edge of the bottom metal blade through the tissue which is to be cut and to the bottom back edge of the top metal blade directly in advance of the cutting action. As the scissors are gradually closed, the hemostasis preferentially occurs at a location just in advance of the cutting point which itself moves distally along the insulated cutting edges of the blades in order to sever the hemostatically heated tissue. With this arrangement, the scissors may be maintained in a continuously energized state while performing the cutting. The Eggers patent describes various alternative embodiments of the bipolar scissors, including the use of metal blades with only one blade being insulated on its shearing surface, and the use of insulating blades with back surfaces coated with metal.

The disadvantage of scissor blades which have non-conductive cutting edges and shearing surfaces is that they are difficult to operate. The non-conductive surfaces are relatively non-lubricous and do not have the smooth operation and feel of a metal on metal cutting/shearing action. Parent application Ser. No. 08/429,596 discloses scissor blades comprised of an electrically conductive electrode, an electrically insulating material, and a coating of titanium dioxide, chromium dioxide, or zirconium dioxide, where the coating provides a lubricious surface which simulates a metal on metal feel. In one embodiment, the electrode layer is a metal blade which is typically constructed from stainless steel, while the insulating layer is an alumina ceramic which is deposited, bonded, or otherwise fixed on the metal blade, and a titanium dioxide coating is deposited, bonded, or otherwise fixed onto the ceramic and provides the cutting edge and shearing surface. In another embodiment, the electrode layer of the scissor blades is a metal blade, and the titanium dioxide is mixed with the alumina ceramic and then applied directly to the conductive electrode. In this preferred embodiment, the ratio by weight of alumina ceramic to titanium dioxide is 87/13, although the ratio can range from 75/25 to 95/5 and still provide the desired insulation and lubricity. In a third embodiment of the invention, the insulating layer is a ceramic support, with the electrode layer and the titanium dioxide shearing surface layer being deposited, bonded, or otherwise fixed to opposite sides of the ceramic support. In all embodiments, since the coated cutting edges and preferably at least a portion of the shearing surfaces are insulated from the electrodes, no short circuit can form between the electrodes even though the cutting edge and shearing surface of each scissor blade are in contact with the cutting edge and shearing surface of the other scissor blade.

In the prior art, as well as in the parent application hereto, a cross sectional profile of an endoscopic scissor blade generally defines an included angle of between 60-90° at the cutting edge. This may be seen in the prior art Figures of 1 and 1a where the blades 26, 28 have an included angle α of approximately 70° at their cutting edges 26b, 28b. It is generally believed in the art that the cutting edge of a surgical scissor blade, and in particular an endosurgical scissor blade, must be defined by an angle of no more than 90° in order to achieve effective cutting.

U.S. Pat. No. 4,709,480 to Takigawa et al. disclosed a scissors for use in horticulture and for industrial purposes. Prior art FIG. 1b shows a cross section of the scissors which has one metallic cutting blade 11 and one ceramic cutting blade 12. Takigawa et al. teaches that if the cutting edge of a ceramic cutting blade is defined by an acute included angle, the ceramic is likely to be damaged. The inventors herein have confirmed that this is also true in the case of endoscopic scissors. According to Takigawa et al., the damage to the ceramic blade is most likely to be caused by the blades interfering with each other as the bow in the scissor blade causes their respective cutting edges to press against each other at a single moving point of contact as the blades are closed. The solution proposed by Takigawa et al. is to locate the cutting edge of the ceramic blade away from the shearing surface so that it never touches the cutting edge of the metallic blade. Thus, the cutting edge of the ceramic blade disclosed by Takigawa et al., as shown in prior art FIG. 1b, is defined by an adjacent side 16 which forms an obtuse angle θ2 with the shearing surface 15 and a beveled side 17. While Takigawa et al. does not specifically disclose what angle is formed by the adjacent side 16 and the beveled side 17 (i.e. the included angle of the cutting edge), it appears to be close to 90°. The scissors proposed by Takigawa et al. may have utility in horticulture and in some industrial applications. However, they are unsuitable for surgical procedures. As those skilled in the art will appreciate from prior art FIG. 1b, when the scissors are used to cut article "c", the cutting edge of the metallic blade 11 will attempt to sever the article along a virtual plane A-B. Since the cutting edge of the ceramic blade 12 is not located in the plane A-B, it will pull the article c up and away from the plane A-B. Thus, depending on the nature of the article c, it may be torn apart rather than cut. Scissors of this design would certainly tear, rather than sever, human tissue.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide an endoscopic scissor blade which includes a ceramic coating which is resistant to chipping.

It is another object of the invention to provide a pair of scissor blades for a bipolar cauterizing surgical scissors which have shearing surfaces that are insulated from cautery surfaces.

It is also an object of the invention to provide a pair of scissor blades for a bipolar cauterizing surgical scissors which provide the smooth operation and feel of a metal on metal cutting/shearing action, and which cut well.

In accord with the objects of the invention, a pair of bipolar endoscopic scissor blades is provided in which at least one scissor blade is coated with an electrically non-conductive ceramic from its cutting edge along at least a contiguous portion of its shearing surface, with the cutting edge of the coated blade defining an obtuse angle. The obtuse angle of the cutting edge is preferably more than 95° and less than 140°, and more preferably between approximately 110° and 120°.

The blades according to the invention may be configured in several different ways with regard to the number of layers and types of material used, the extent of the ceramic coating, and whether one or both blades are configured in an identical manner. In a first embodiment, a scissor blade having a partial ceramic coating is used in conjunction with an uncoated metallic scissor blade having an acute angle cutting edge. In a second embodiment of the invention, two substantially identically configured ceramic coated blades are shown, both having obtuse angle cutting edges. Other embodiments of the invention include blades having fully coated shearing surfaces and blades which are laminates of several different materials. It has been discovered by the inventors herein that the blades according to the invention having cutting edges defined by obtuse angles cut well and provide a good cutting feel to the practitioner. As the angle of the cutting edge is increased above 90°, the integrity of the ceramic at the cutting edge is enhanced. Clearly, if the angle is too large, no cutting will be effected. It has been discovered by the inventors herein that an angle approximately 95-140° works well and that a presently preferred angle is between approximately 110° and 120°.

Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an enlarged cross sectional view of prior art endoscopic scissor blades;

FIG. 1a is a further enlarged portion of FIG. 1 showing the point of contact and the included angles of the cutting edges of the prior art scissor blades;

FIG. 1b is a view similar to FIG. 1 of prior art horticultural scissor blades;

FIG. 2 is a broken side elevation view in partial section of an endoscopic bipolar scissors instrument;

FIG. 3 is an enlarged side elevation view of a pair of scissor blades incorporating a ceramic coating on one of the blades;

FIG. 4 is an enlarged cross sectional view taken at 4--4 of FIG. 3 and showing a first embodiment of the invention;

FIG. 4a is a view similar to FIG. 1a and showing the included angles of the blades of the first embodiment of the invention;

FIG. 5 is a view similar to FIG. 4 of a second embodiment of the invention;

FIG. 5a is a view similar to FIG. 4a of the second embodiment of the invention;

FIG. 6 is a view similar to FIG. 5 of a third embodiment of the invention;

FIG. 7 is a view similar to FIG. 6 of a fourth embodiment of the invention;

FIGS. 8a through 8c are enlarged sectional views illustrating a presently preferred method of making the scissor blades of the invention; and

FIG. 9 is a view similar to FIG. 6 illustrating a presently preferred embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 2 shows the endoscopic bipolar cautery scissors instrument 10, utilized in the parent application and the related applications incorporated by reference herein above in which the end effectors of the present invention find use. The endoscopic bipolar scissors instrument 10 includes a proximal handle 12 with a manual lever actuator 14 pivotally coupled to the handle by a pivot pin 15. A hollow stainless steel tube 16 is rotatably coupled to the handle 12 and is preferably rotatable about its longitudinal axis relative to the handle 12 through the use of a ferrule 18 such as described in detail in previously incorporated copending application Ser. No. 08/284,793. A push rod assembly 20 extends through the hollow tube 16 and is coupled at its proximal end 22 to the manual lever actuator 14 as described in more detail in copending application Ser. No. 08/284,793. The distal end of the tube 16 has an integral clevis 24 within which a pair of scissor blades 26, 128 are mounted on an axle screw 30. The distal end 23 of the push rod assembly 20 is coupled to the scissor blades 26, 128 so that reciprocal movement of the push rod assembly 20 relative to the tube 16 opens and closes the scissor blades 26, 128. It will be appreciated that the reciprocal movement of the push rod assembly 20 relative to the tube 16 is effected by movement of the manual lever actuator 14 relative to the handle 12.

The presently preferred embodiment of the push rod assembly 20 includes a pair of stainless steel rods 32, 34 which are molded into a proximal collar 36 and captured in a distal collar 46. The proximal collar has a radial groove 40 in its distal portion and an increased diameter proximal portion 37 which carries a pair of electrical coupling pins 39 which are electrically coupled to the rods 32, 34. As shown, the pins 39 are spaced farther apart from each other than the rods 32, 34 so as to accommodate a standard cautery connector. While the proximal collar shown has a male connector, a female connector may be used instead. The rods 32, 34 are covered with an insulating double lumen polypropylene tube 50 along substantially their entire length between the proximal and distal collars 36, 46. The double lumen tube 50 may be discontinuous at a point inside the tube 16 to provide a rubber air flow seal (not shown) on the rods 32, 34. According to a presently preferred embodiment, the distal collar 46 is made from a single ceramic piece. The electrically conductive rods 32, 34 exit the distal collar 46 through opposite sides at substantially right angles. The distal ends of the rods 32, 34 are mechanically and electrically coupled to the respective blades 26, 128 by respective electrically conductive links 99.

As shown in FIG. 3 the first scissor blade 26 has a distal portion 26a, a lower proximal tang 26c, and a mounting hole 26d therebetween. A connecting lug 26e extends orthogonally outward from the surface of the tang 26c in a first direction. The distal portion 26a includes a lower cutting edge 26b and an inner surface 26f (also called the shearing surface). The opposed second scissor blade 128 is configured similarly to the first scissor blade and has a distal portion 128a, an upper proximal tang 128c, and a mounting hole 128d therebetween. A connecting lug (not shown) extends orthogonally from the surface of the tang 128c in a second direction which is opposite to the first direction mentioned above. The distal portion 128a includes an upper cutting edge 128b (defining an obtuse angle as discussed below) and an inner surface 128f. According to the parent application and the present invention, at least one of the scissor blades 26, 128 (in this case blade 128) is coated with an electrically non-conductive ceramic 128g from its cutting edge 128b along at least a contiguous portion of its shearing surface 128f.

Turning now to FIGS. 4 and 4a, details of the cutting edges of a first embodiment of bipolar scissor blades according to the invention are seen. The conventional metal blade 26 has a shearing surface 26f and a cutting edge 26b which is defined by an included angle α of approximately 60°-90°. The scissor blade 128 has a shearing surface 128f which is partially coated with a ceramic material 128g adjacent to its cutting edge 128b. The cutting edge 128b of the blade 128 is defined by an obtuse angle β which is preferably more than 95° and less than 140°, and more preferably between approximately 110° and 120°. When used in a bipolar endosurgical instrument such as the one shown in FIG. 1, the blades 26, 128 provide the smooth operation and feel of a metal on metal cutting/shearing action. The ceramic coating 128g on the blade 128 insures that the shearing surfaces 26f, 128f of the blades are electrically insulated from each other so that cautery current my be constantly supplied throughout a cutting procedure. The included obtuse angle of the cutting edge 128b of the blade 128 prevents the ceramic coating 128f from chipping at the cutting edge 128b. Despite the fact that the cutting edge of the coated blade 128 is defined by an obtuse angle, the scissors cut very well.

According to a second embodiment of the invention shown in FIGS. 5 and 5a, a pair of bipolar scissor blades according to the invention includes two partially ceramic coated metal blades 126 and 128. In this embodiment, the blade 126 is configured substantially the same as the blade 128 described above. When used in a bipolar endosurgical instrument such as the one shown in FIG. 1, the blades 126, 128 provide the smooth operation and feel of a metal on metal cutting/shearing action. The ceramic coatings 126g, 128g on the blades 126, 128 insure that the shearing surfaces 126f, 128f of the blades are electrically insulated from each other so that cautery current my be constantly supplied throughout a cutting procedure. The included obtuse angles of the cutting edges 126b, 128b of the blades 126, 128 prevents the ceramic coatings 126f, 128f from chipping at the cutting edges 126b, 128b. Despite the fact that the cutting edges are defined by obtuse angles, the scissors cut very well.

According to a third embodiment of the invention shown in FIG. 6, a pair of bipolar scissor blades according to the invention includes metal blades 226 and 228. In this embodiment, both blades 226 and 228 have a shearing surface 226f, 228f which is substantially completely coated with a ceramic material 226g, 228g and a cutting edge 226b, 228b which is defined by an obtuse angle. When used in a bipolar endosurgical instrument such as the one shown in FIG. 1, the blades 226, 228 provide the smooth operation and feel of a metal on metal cutting/shearing action. The ceramic coatings 226g, 228g on the blades 226, 228 insure that the shearing surfaces 226f, 228f of the blades are electrically insulated from each other so that cautery current may be constantly supplied throughout a cutting procedure. The included obtuse angles of the cutting edges 226b, 228b of the blades 226, 228 prevents the ceramic coatings 226f, 228f from chipping at the cutting edges 226b, 228b. Despite the fact that the cutting edges are defined by obtuse angles, the scissors cut very well.

From the foregoing, it will be appreciated either of the scissor blades 128, 228 may be used with any of the blades 26, 126, 226. Moreover, although not shown, the non-coated blade 26 may be provided with a 90° or obtuse angle cutting edge if desired to impart symmetry to the scissor blades and/or to reduce the cost of manufacture by casting both blades in the same die.

As described in the parent application, bipolar scissor blades may be made of a laminate of several conductive and non-conductive materials. FIG. 7 shows an example of two scissor blades 326, 328 which are each composite laminates of conductive and non-conductive material. Typically, the shearing surface 326f, 328f of the blades will be a ceramic material in order to provide the metal-on-metal feel taught by the parent application. The middle portion 326r, 328r of the laminate may be either conductive or non-conductive and the outer portion 326q, 328q of the laminate may be either conductive or non-conductive provided that at least one of the middle portion and the outer portion is conductive. In accord with the invention, the blades having ceramic coated shearing surfaces are provided with cutting edges defined by an obtuse angle.

A presently preferred method of making the scissor blades according to the invention is illustrated in FIGS. 8a-8c and 9. A metallic scissor blade 428 having an acute angle cutting edge 428a, as shown in FIG. 8a, is obtained. A ceramic coating 428g is applied to the shearing surface 428f of the blade as shown in FIG. 8b. The blade 428 and the coating 428g are then ground along a line "G" as shown in FIG. 8c to form an obtuse angle cutting edge 428b as shown in FIG. 9. A second all-metal scissor blade 426 having an acute angle cutting edge 426a is also obtained, and the two scissor blades 426, 428 are arranged as shown in FIG. 9 so that cutting takes place at the point where there respective cutting edges 426a, 428b meet. The former cutting edge 428a of the ceramic coated blade is rendered sufficiently dull and is spaced far enough apart from the cutting edge 428b so that no cutting or tearing is effected by the former cutting edge 428a. If desired, to further insure that cutting occurs only at edges 426a and 428b, the metal edge 428a may be rounded in a further grinding step.

There have been described and illustrated herein several embodiments of bipolar endoscopic surgical scissor blades and an instrument incorporating them. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular conductive and non-conductive materials have been disclosed, it will be appreciated that other materials could be utilized. Also, while blades of specific shape and dimension have been shown, it will be recognized that blades having different shapes and dimensions could be used with similar results obtained. While means for pivotally joining the blades has been shown as an axle screw with a nut, other pivotal joining means could be used. For example, a clevis with an integral axle pin, or a snap-in axle pin, or a riveted axle pin could all be used. While means for supplying each blade with a voltage has been shown as a bipolar push rod, it will be appreciated that other means such as a bipolar clevis and bipolar hollow tube could be used. Individual shielded electrical conductors within the hollow tube could also be used for this purpose. In addition, while the electrical coupling of the conductive portion of each blade has been shown as the proximal connecting lug which connects to a link, it will be appreciated that an electrical coupling could be made through a two piece bipolar clevis axle. Also, while the means for imparting scissor-like movement to the blades has been shown as a push rod, a pull wire or other reciprocating arrangement might be used as well. In addition, while the means for coupling the scissor blades to the push rod has been shown as an orthogonal lug, it will be understood that other means such as a connecting hole could be used while achieving substantially the same results. Moreover, while particular methods have been disclosed in reference to laminating conductive and non-conductive layers, it will be appreciated that other methods could be used as well. Also, it will be appreciated that provision of an obtuse angle cutting edge on a scissor blade having a ceramic coating on its shearing surface may be applied to many different types of scissor blades and the scissor blades described herein are to be considered exemplary rather than limiting. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as so claimed.

Scissors Background

Scissors are cutting instruments consisting of a pair of metal blades connected in such a way that the blades meet and cut materials placed between them when the handles are brought together. The word shears is used to describe larger instruments of the same kind. As a general rule, scissors have blades less than 6 in (15 cm) long and usually have handles with finger holes of the same size. Shears have blades longer than 6 in (15 cm) and often have one small handle with a hole that fits the thumb and one large handle with a hole that will fit two or more fingers.

Scissors and shears exist in a wide variety of forms depending on their intended uses. Children's scissors, used only on paper, have dull blades to ensure safety. Scissors used to cut hair or fabric must be much sharper. The largest shears are used to cut metal or to trim shrubs and must have very strong blades.

Specialized scissors include sewing scissors, which often have one sharp point and one blunt point for intricate cutting of fabric, and nail scissors, which have curved blades for cutting fingernails and toenails. Special kinds of shears include pinking shears, which have notched blades that cut cloth to give it a wavy edge, and thinning shears, which have teeth that thin hair rather than trim it.

The earliest scissors known to exist appeared in the Middle East about 3,000 or 4,000 years ago and were known as spring scissors. They consisted of two bronze blades connected at the handles by a thin, curved strip of bronze. This strip served to bring the blades together when squeezed and to pull them apart when released. Steel shears of a similar design are still used to cut wool from sheep.

Pivoted scissors of bronze or iron, in which the blades were connected at a point between the tips and the handles, were used in ancient Rome, China, Japan, and Korea. Despite the early invention of this design, still used in almost all modern scissors, spring scissors continued to be used in Europe until the sixteenth century.

During the Middle Ages and Renaissance, spring scissors were made by heating a bar of iron or steel, then flattening and shaping its ends into blades on an anvil. The center of the bar was heated, bent to form the spring, then cooled and reheated to make it flexible. Pivoted scissors were not manufactured in large numbers until 1761, when Robert Hinchliffe of Sheffield, England, began using cast steel to make them. Cast steel, recently invented at the time by Benjamin Huntsman, also of Sheffield, was made by melting steel in clay crucibles and pouring it into molds. This resulted in a more uniform steel with fewer impurities.

During the nineteenth century, scissors were hand-forged with elaborately decorated handles. They were made by hammering steel on indented surfaces known as bosses to form the blades. The rings in the handles, known as bows, were made by punching a hole in the steel and enlarging it with the pointed end of an anvil.

By the beginning of the twentieth century, scissors were simplified in design to accommodate mechanized production. Instead of being forged entirely by hand, blades and handles were now formed by using drop hammers. Powered by steam, these large, heavy devices used dies to shape the scissors from bars of steel. Modern versions of drop hammers are still used to manufacture scissors today.

Raw Materials

Scissors are usually made of steel. Some scissors used for special purposes are made from other metal alloys. Scissors used to cut cordite (an explosive substance resembling twine) must not produce sparks. Scissors used to cut magnetic tape must not interfere with magnetism.

Steel scissors exist in two basic forms. Carbon steel is used to make scissors in which the blade and the handle form one continuous piece. Carbon steel is manufactured from iron and about 1% carbon. It has the advantages of being strong and staying sharp. Scissors made from carbon steel are usually plated with nickel or chromium to prevent them from rusting.

Stainless steel is used to make scissors in which a plastic handle is fitted to the metal blade. Stainless steel is manufactured from iron, about 1% carbon, and at least 10% chromium. It has the advantages of being light and rustproof. The handles of stainless steel scissors are made from a strong, light substance such as ABS (acrylonitrile-butadiene-styrene) plastic.

The Manufacturing
Process

Making the blanks

  • 1 Before they are sharpened and attached, the two halves of a pair of scissors are known as blanks. A blank may consist of a blade and a handle in one piece or it may consist of only the blade. In the latter case, a metal handle will be welded to the blade or a plastic handle will be attached to it.
  • 2 Inexpensive scissors may be made from blanks formed by cold stamping. In this process, a sharp die in the shape of the blank is stamped into a sheet of unheated steel. The die cuts through the steel to form the blank.
  • 3 Blanks may also be made by molding. O Molten steel is poured into a mold in the shape of the blank. The steel cools back into a solid and the blank is removed.
  • 4 Most quality scissors are made from blanks formed by drop forging. Like cold stamping, this process involves shaping the blanks with a die. This die, known as a drop hammer, pounds into a bar of red-hot steel to form the blank. The pressure of the drop hammer also strengthens the steel.

Processing the blanks

  • 5 The blanks are trimmed to the proper shape by cutting away excess metal. A hole is drilled through the blank. This hole will later allow two completed blades to be attached to each other.
  • 6 The trimmed blanks are hardened by heating them, then cooling them quickly in cold air, water, oil, or another substance. The temperature to which they are heated and the medium in which they are cooled varies depending on the type of steel from which they are made and the desired characteristics of the blade.
  • 7 The hardened blanks are heated again and allowed to cool slowly in air. This second heating, known as tempering, gives the blank a uniform hardness. If the blades of a pair of scissors did not have uniform hardness, the harder places on one blade would soon wear out the softer places on the other blade.
  • 8 The repeated heating and cooling causes the blanks to warp. They are straightened by being placed on an anvil and lightly tapped with a hammer. This process is known as peening.

Grinding and polishing

  • 9 The blank is ground into a blade by applying the edge to a rapidly moving sanding belt or abrasive wheel. The surface of the belt or wheel is covered with small particles of an abrasive substance and works in the same way as sandpaper. The hard abrasive grinds away enough steel to form a sharp edge. During this process, the blade is cooled with water or various liquids known as cutting fluids to prevent it from heating and warping. The sharpened blade is then polished in a similar manner using belts or wheels, containing much smaller particles of abrasive.

Making the handles

  • 10 For many scissors, the handles are I 0 / formed from the start as part of the blank. If not, they may be made of a metal alloy or from plastic. If they are metal, they are made in the same way as the blanks and then welded to them. If they are plastic, they are made by injection molding. In this process, molten plastic is forced under pressure into a mold in the shape of the handles. It is allowed to cool and the mold is opened to remove the handles. The handles contain hollow slots into which the end of the blanks can be inserted. A strong adhesive is used to keep the handle firmly attached.

Assembling the scissors

  • 11 Two polished blades are attached to each other by a rivet or screw through the previously drilled holes. Rivets, which cannot be adjusted by the consumer, are used to make less expensive scissors. Adjustable screws are used in more costly scissors.
  • 12 The scissors are adjusted to ensure. that the two blades work together correctly. They may be painted or plated with nickel or chrome to protect them from rust. The scissors are inspected for flaws, the screw or rivet is lubricated, and the scissors are wrapped for shipping to consumers.

Quality Control

The most important aspect of quality control for scissors is the proper alignment of the two blades. In order for scissors to cut smoothly, the blades must meet at two points only. These two points are the swivel (the point where the rivet or screw connects the blades) and the cutting point. The cutting point moves from just beyond the swivel to the tip as the scissors are closed. The blades are prevented from meeting at any other points by giving them a slight horizontal and vertical curve away from each other during manufacture.

In order to ensure that the blades meet correctly, the holes must be drilled to within one ten-thousandth of an inch (about one four-hundredth of a millimeter) of the correct position. The position of the blades is inspected visually to see if the blades meet evenly. If not, a portion of one blade will overlap the other. This defect is known as a wing. The tips are also inspected to ensure that they meet evenly, without a gap between them or any overlap.

Because even dull scissors are able to cut paper adequately, quality scissors are tested on tough synthetic fabrics. Sharpness is tested by making sure the blades cut the fabric rather than tear it. Strength is tested by cutting through multiple layers of fabric. The blades should come together with a constant pressure during cutting.

The consumer is responsible for maintaining the quality of the scissors. Scissors should only be used to cut the materials for which they were designed. They should be oiled and sharpened regularly, and the screw should be adjusted as necessary. Scissors should be stored in a closed position. Setting down scissors in an open position is the most common cause of dull blades.

The Future

Although scissors have remained in a standard form for hundreds of years, recent innovations may change the look of this ordinary household tool. Scissors using round, rolling blades have been designed. Ceramics made from zirconium oxide have been used to manufacture scissors with blades which are extremely strong, rustproof, and which never need sharpening.